Engineering a genetically-encoded SHG chromophore by electrostatic targeting to the membrane

نویسندگان

  • Yuka Jinno
  • Keiko Shoda
  • Emiliano Rial-Verde
  • Rafael Yuste
  • Atsushi Miyawaki
  • Hidekazu Tsutsui
چکیده

Although second harmonic generation (SHG) microscopy provides unique imaging advantages for voltage imaging and other biological applications, genetically-encoded SHG chromophores remain relatively unexplored. SHG only arises from non-centrosymmetric media, so an anisotropic arrangement of chromophores is essential to provide strong SHG signals. Here, inspired by the mechanism by which K-Ras4B associates with plasma membranes, we sought to achieve asymmetric arrangements of chromophores at the membrane-cytoplasm interface using the fluorescent protein mVenus. After adding a farnesylation motif to the C-terminus of mVenus, nine amino acids composing its β-barrel surface were replaced by lysine, forming an electrostatic patch. This protein (mVe9Knus-CVIM) was efficiently targeted to the plasma membrane in a geometrically defined manner and exhibited SHG in HEK293 cells. In agreement with its design, mVe9Knus-CVIM hyperpolarizability was oriented at a small angle (~7.3°) from the membrane normal. Genetically-encoded SHG chromophores could serve as a molecular platform for imaging membrane potential.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Second Harmonic Generation Diagnostic of Layer by Layer Deposition from Disperse Red 1–Functionalized Maleic Anhydride Copolymer

Layer-by-layer (LBL) electrostatic assembly of poly-electrolytes is proving to be an increasingly rich and versatile technique for the formation of multilayered thin films with a wide range of electrical, magnetic, and optical properties. In the present work we synthesized a new nonlinear optical (NLO) maleic acid copolymer containing Disperse Red 1 moieties, built-up multilayer assemblies by a...

متن کامل

Second harmonic imaging of membrane potential of neurons with retinal.

We present a method to optically measure and image the membrane potential of neurons, using the nonlinear optical phenomenon of second harmonic generation (SHG) with a photopigment retinal as the chromophore [second harmonic retinal imaging of membrane potential (SHRIMP)]. We show that all-trans retinal, when adsorbed to the plasma membrane of living cells, can report on the local electric fiel...

متن کامل

Chromophore chemistry of fluorescent proteins controlled by light.

Recent progress in molecular engineering of genetically encoded probes whose spectral properties are controlled with light, such as photoactivatable, photoswitchable and reversibly switchable fluorescent proteins, has brought the new possibilities to bioimaging and super-resolution microscopy. The development of modern photoconvertible proteins is linked to the studies of light-induced chromoph...

متن کامل

Imaging membrane potential in dendritic spines.

Dendritic spines mediate most excitatory inputs in the brain. Although it is clear that spines compartmentalize calcium, it is still unknown what role, if any, they play in integrating synaptic inputs. To investigate the electrical function of spines directly, we used second harmonic generation (SHG) imaging of membrane potential in pyramidal neurons from hippocampal cultures and neocortical br...

متن کامل

Second harmonic generation in neurons: electro-optic mechanism of membrane potential sensitivity.

Second harmonic generation (SHG) from membrane-bound chromophores can be used to image membrane potential in neurons. We investigate the biophysical mechanism responsible for the SHG voltage sensitivity of the styryl dye FM 4-64 in pyramidal neurons from mouse neocortical slices. SHG signals are exquisitely sensitive to the polarization of the incident laser light. Using this polarization sensi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2014